
J Stat Phys (2008) 132: 721–754
DOI 10.1007/s10955-008-9569-0

LERW as an Example of Off-Critical SLEs

Michel Bauer · Denis Bernard · Kalle Kytölä

Received: 19 December 2007 / Accepted: 13 May 2008 / Published online: 25 June 2008
© Springer Science+Business Media, LLC 2008

Abstract Two dimensional loop erased random walk (LERW) is a random curve, whose
continuum limit is known to be a Schramm-Loewner evolution (SLE) with parameter κ = 2.
In this article we study “off-critical loop erased random walks”, loop erasures of random
walks penalized by their number of steps. On one hand we are able to identify counterparts
for some LERW observables in terms of symplectic fermions (c = −2), thus making further
steps towards a field theoretic description of LERWs. On the other hand, we show that it is
possible to understand the Loewner driving function of the continuum limit of off-critical
LERWs, thus providing an example of application of SLE-like techniques to models near
their critical point. Such a description is bound to be quite complicated because outside
the critical point one has a finite correlation length and therefore no conformal invariance.
However, the example here shows the question need not be intractable. We will present the
results with emphasis on general features that can be expected to be true in other off-critical
models.
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1 Introduction

Over the last few years, our understanding of interfaces in two dimensional systems at crit-
icality has improved tremendously. Schramm’s idea [30] to describe these interfaces via
growth processes has met a great success. We are now in position to answer quantitatively
in a routine way many questions of interest for physicists and/or mathematicians (the overlap
is only partial, but non void).

All these successes suggest that we might try to be more ambitious and it seems that time
has come to start thinking about what can be said for interfaces in non-critical systems. So
far, the only attempts in this direction seem to be [8, 27], although also some yet unpublished
work [26] will treat questions similar to this article in various models.

Needless to say, we do not aim to achieve general and definitive success in these notes. It
is more our purpose to review some examples and see what we can say in each situation. We
shall go a bit deeper into the specific example of loop erased random walks (LERW). This
choice has a number of reasons. First, certain quantities for the LERW can be computed
using only the underlying walk (with its loops kept), whose scaling limit is the familiar
Brownian motion. This is the case for instance of boundary hitting probabilities. Second,
the quantum field theory of the LERW is that of symplectic fermions, a free fermionic the-
ory. This relationship is part of the standard lore at criticality, but it persists in the massive
situation, and the specific perturbation we study is related to the Brownian local time, mak-
ing it possible to compare closely the points of view of physics and mathematics.

To understand the difficulties inherent to the study of noncritical interfaces, it is perhaps
worth spending some time on the physical and mathematical views concerning criticality
and conformal invariance.

In statistical mechanics on the lattice, for generic values of the parameters (collectively
called J here, examples include temperature, pressure, magnetic field, fugacity) the con-
nected correlations among local observables decrease quickly (typically exponentially) with
the distance: a correlation length n(J ) (in lattice units) can be defined and turns out to be
of the order of a finite number of lattice mesh. Achieving a large n(J ) requires to adjust the
parameters. Imagine we cover the plane (or approximate a fixed domain in the plane) with a
lattice of mesh a, and tune the parameters J in such a way that the macroscopic correlation
length an(J ) = ζ remains fixed while a goes to 0. Then it is expected on physical grounds
that a limiting continuum theory exists, which may describe only some of the initial degrees
of freedom in the system. Lattice translation symmetry becomes usual translation invariance
in the limit. Rotation invariance is also very often restored. Over scales s � a the discrete
system is expected to be well approximated by the continuum theory.

In the limit a → 0, J tends to a limiting critical value Jc (when several parameters are
present this may be a critical manifold). The approach of J to Jc when a → 0 is described
by critical exponents. As n(Jc) is infinite, so is an(Jc) for any a, and the macroscopic cor-
relation length is infinite at the critical point as well: the system has no characteristic length
scale and the continuum limit is scale invariant. Over scales s � ζ the continuum off-critical
system is expected to be well approximated by the critical system. On the lattice, an infi-
nite number of control parameters can easily be exhibited, but if only their influence on the
long distance physics is considered the equivalence classes form usually a finite dimensional
space. Similarly, in the continuum limit, usually only a finite number of perturbations out of
criticality are relevant.

For many two dimensional systems of interest, translation, rotation and scale invariance
give local conformal invariance for free: the descriptions of the system in two conformally
equivalent geometries are related by pure kinematics. This remarkable feature that emerges



LERW as an Example of Off-Critical SLEs 723

only in the continuum limit is suggested by convincing physical arguments but unproved in
almost all cases of interest. The consequences of conformal invariance have been vigorously
exploited by physicists for local observables since the 1984 and the seminal paper [7], even
if the road to a complete classification of local two dimensional conformal field theories is
still a distant horizon.

Schramm’s result in 1999 [30], on the other hand, is a complete classification of prob-
ability measures on random curves in (simply connected) domains of the complex plane
(say joining two boundary points for definiteness) satisfying two axioms: conformal invari-
ance and the domain Markov property. Again, the actual proof that a lattice interface has
a limiting continuum description which satisfies the two axioms requires independent hard
work. However the number of treated cases is growing rapidly, including the LERW, the
Ising model, the harmonic navigator, percolation.1 A notorious exception which up to now
has resisted to all attacks is the case of self avoiding walks.

Suppose that for each triple (D, x0, x∞) consisting of a domain with two marked bound-
ary points one has a probability measure on curves joining x0 to x∞ (so we have the chordal
case in mind). Consider an initial segment of curve, say γ , joining x0 to a bulk point x ′ in D.
The domain Markov property relates the distribution of random curves in two situations: it
states the equality of 1) the distribution of the rest of the random curve from x ′ to x∞ in D

conditional on γ and 2) the distribution of the random curve from x ′ to x∞ in D\γ .
This leads naturally to a description of the random curve as a growth process: if one

knows how to grow an (infinitesimal) initial segment γ in (D, x0, x∞) from x0 to x∞, one
can apply the domain Markov property to build the rest of the curve as a curve in the cut do-
main (D\γ, x ′, x∞) and then conformal invariance to “unzip” the cut i.e. map (D\γ, x ′, x∞)

conformally to (D, x0, x∞), so that another (infinitesimal) initial segment can be grown and
mapped back to (D\γ, x ′, x∞) to get a larger piece of curve, and so on.

Technically, Schramm’s proof is made simpler by using the upper half plane H with 0
and ∞ as marked points, with a time parameterization of the curve by (half) its capacity.
Then the conformal map gt (z) that unzips the curve grown up to time t and behaves at ∞
like z + O(z−1) satisfies a Loewner differential equation dgt (z)

dt
= 2

gt (z)−ξt
which amounts to

encoding the growing curve via the real continuous driving function ξt . It should be stressed
that this representation is valid for any curve (or more generally any locally growing hull),
independently of conformal invariance. However, the domain Markov property and confor-
mal unzipping of the random curves straightforwardly translate into nice properties of the
process ξt : it has independent and stationary increments. Continuity yields that ξt is a linear
combination of a Brownian motion and time. Finally scale invariance, the conformal trans-
formations fixing (H,0,∞), leaves the sole possibility that ξt = √

κBt for some normalized
Brownian motion Bt and nonnegative scale factor κ .

Now suppose we consider the system out of criticality. Intuitively, there is no doubt that
the probability that the interface has a certain topology with respect to a finite number of
points in the domain should depend smoothly on the correlation length ζ . But can we say a
bit more? Conformal invariance cannot be used to relate different domains and concentrating
on the upper half plane case, as in the following, is really a choice.2 We can then describe
the interface again by a Loewner equation for a g

ζ
t (z) with some (off-critical) source ξ

ζ
t .

What do we expect for this new random process?

1But it should be noted that most of the proofs deal with a specific version on a specific lattice, which is rather
unsatisfactory for a physicist thinking more in terms of universality classes.
2Unless, as we will sometimes choose to do, we complicate matters by allowing the perturbation parameter
(and thus correlation length) to vary from one point to another.
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At scales much smaller that the correlation length, i.e. in the ultraviolet regime, the de-
viation from criticality is small, and for instance the interface should look locally just like
the critical interface. This means that over short time periods, the off-critical ξ

ζ
t should not

be much different from its critical counterpart. It is easily seen that if λ > 0, the rescaled
Loewner map 1

λ
gλ2t (λz) still satisfies the Loewner equation, but with a source 1

λ
ξ

ζ

λ2t
. Taking

a small λ amounts to zoom at small scales near the origin and we expect that (in some yet
unspecified topology) limλ→0+ 1

λ
ξ

ζ

λ2t
exists and is a

√
κBt for some normalized Brownian

motion. As the interface looks like a critical interface not only close to the origin but close to
any of its points, we also expect that gζ

s maps the interface to a curve that looks like a critical
curve close to the origin, so that more generally for fixed s the limit limλ→0+ 1

λ
(ξ

ζ

s+λ2t
− ξ ζ

s )

should exist and be a
√

κBt . Hence to each fixed s we can in principle define a Brown-
ian motion. The Brownian motions defined for distinct s’s are moreover expected to be
independent. To go further, we would need to have some control on how uniform in s the
convergence is, and how fast the correlations between 1

λ
(ξ

ζ

s+λ2t
− ξ ζ

s ) for distinct values of
s decrease with λ. There could be some problem with inversions of limits. In the nice situa-
tion, we would naively deduce for the above facts that the quadratic variation of ξ

ζ
t is exactly

κt even at finite ζ . This raises the question whether ξ
ζ
t can be represented as the sum of a

Brownian motion (scaled by
√

κ) plus some process, contributing 0 to the quadratic vari-
ation, but whose precise regularity would remain to be understood. Finally, the strongest
relationship one could imagine between ξ

ζ
t and its critical counterpart ξt would be that their

laws are mutually absolutely continuous3 over finite time intervals.4 We shall see exam-
ples of this situation in the sequel, but at least one counterexample is known, off-critical
percolation [27]. On the lattice, the set of interfaces is discrete, and the question of absolute
continuity trivializes. One can write down discrete martingales describing the relative weight
of an initial interface segment off/at criticality and a naive extrapolation to the continuum
limit yields a candidate for the Radon-Nikodym derivative for the growth of the interface.
This is the basis of much of the forthcoming discussion.

At scales large with respect to ζ however, i.e. in the infrared regime, the behavior is
different and the interface should look like another SLE with a new κir . Think of the Ising
model for example. At criticality κ = 3 but if the temperature is raised above the critical
point, renormalization group arguments indicate that at large scale the interface looks like
the interface at infinite temperature, i.e; percolation and κir = 6. One expects in general that
limλ→+∞ 1

λ
ξ

ζ

λ2t
exists and is a

√
κirBt . This means that the process ξ

ζ
t could yield informa-

tion on the flow of the renormalization group. Whether this can be used as an effective tool
is unclear at the moment.

Let us close this introduction with the following observations. Conformal invariance and
the domain Markov property have a rather different status. Whereas conformal invariance
emerges (at best) in the continuum limit at criticality, the domain Markov property makes
sense and is satisfied on the lattice without tuning parameters for many systems of interest.
It can be considered as a manifestation of locality (in the physicists terminology). Hence the

3A positive measure dμ1 is said to be absolutely continuous with respect to another positive measure dμ2
on the same space if for any B2 such that μ2(B2) = 0 there is a B1 ⊃ B2 such that μ1(B1) = 0, more
loosely, if negligible sets for μ2 are also negligible for μ1. Under a technical condition, this ensures that
there is a μ2-measurable function f , called the Radon-Nikodym derivative of μ1 with respect to μ2, such
that dμ1 = f dμ2. The theorem is obvious for finite or countable spaces but delicate in general, see e.g. [12,
29].
4As a consequence, we may expect a Radon-Nikodym derivative for the interface at best in finite domain but
not in infinite domain such as the half plane.
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domain Markov property is still expected to hold off criticality. However the consequences
of this property on ξ

ζ
t do not seem to have a simple formulation. As for conformal invari-

ance, there is a trick to preserve it formally out of the critical point: instead of perturbing
with a scaling field O(z, z̄) times a coupling constant λ, perturb by a scaling field times a
density λ(z, z̄) of appropriate weight, in such a way that λ(z, z̄)O(z, z̄)dz̄ ∧ dz is a 2-form.
This also gets rid of infrared divergences that occur in unbounded domain if λ(z, z̄) has
compact support. We shall use this trick in some places, but beware that if perturbation the-
ory contains divergences, problems with scale invariance will arise, hence the cautious word
“formally” used above.

The paper is organized as follows. We start with a few examples in Sect. 2. A brief
account of SLEs, as appropriate for our needs, is given in Sect. 3. Section 4 is devoted to
the general philosophy of how one might hope to attack the question of interfaces in off-
critical models. In particular we propose a field theoretical formula for Radon-Nikodym
derivative between the off-critical and critical measures on curves. The main example of
LERW is treated in detail in Sect. 5. We discuss the critical and off-critical field theory
for LERW, compute multipoint functions of the perturbing operator and subinterval hitting
probabilities—and derive in two ways the off-critical driving process to first order in the
magnitude of the perturbation.

2 Examples

To give some concreteness to the thoughts presented in the introduction, we will start with
a couple of examples.

2.1 Self Avoiding Walks

Our first example deals with self avoiding walks (SAW). Consider a lattice of mesh size a

embedded in a domain D in the complex plane. A sample of a SAW is a simple nearest
neighbor path on the lattice never visiting twice any lattice site. The statistics of SAW is
specified by giving the weight wγ = x |γ |, with |γ | the number of steps of γ and x the fugac-
ity, to each path γ . The partition function ZD is the sum ZD = ∑

γ x |γ | and the probability
of occurrence of a curve γ is wγ /ZD.

There is a critical value xc , depending on the lattice, for which typical sample consists
of paths of macroscopic sizes so that the continuum limit a → 0 can be taken. This contin-
uum limit is conjectured to be conformally invariant and described by chordal SLE8/3 if we
restrict ourselves to SAW starting and ending at prescribed points on the boundary of D.

The off-critical SAW model in the scaling regime consists of looking at SAW for fugac-
ity x close to its critical value xc (and approaching xc in a appropriate way as the mesh size
goes to zero). The continuous limiting theory is not anymore conformally invariant as a scale
parameter is introduced when specifying the way x approaches its critical value. Renormal-
ization group arguments tell us that if x < xc the fugacity flows to zero at large distances so
that the partition function is dominated by the shortest path while if x > xc it flows to the
critical value corresponding to uniform spanning trees (UST) so that the partition function
is dominated by these space filling paths.

The off-critical partition function
∑

γ x
|γ |
c (x/xc)

|γ | can be written as an expectation value
with respect to the critical measure

ZD/Zc
D

= E[(x/xc)
|γ |]
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with Zc
D

the critical partition function and E the critical measure. If a sample path γ has a
typical length scale lD(γ ), which is macroscopic in the critical theory, its number of steps
scales as |γ | 
 (lD(γ )/a)dκ with a the lattice mesh size and dκ the fractal dimension (more
or less by definition of the fractal dimension). The scaling limit defining the continuous
off-critical theory then consists of taking the limit x → xc such that � := −a−dκ log(x/xc)

is finite as a → 0, that is (x − xc)/xc 
 −�adκ as a → 0. The parameter � has scaling
dimension dκ and introduces a scale and a typical correlation length ζ 
 �−1/dκ . This ensures
that the relative weights (x/xc)

|γ | 
 e−�|γ |adκ have a finite limit for typical paths as the mesh
size goes to zero. In the continuum the weights (relative the critical weights) are e−�LD(γ )

with LD(γ ) 
 lD(γ )dκ and the ratio of the off-critical partition function to the critical one is

ZD = E[e−�LD(γ )].

In the continuum limit the critical curve should be described by SLEs and we’d like to
understand what the above teaches us about the off-critical curves. Recall that SLE comes
as a one parameter family SLEκ , κ > 0, and that critical SAW is conjectured to be described
by SLE8/3. For simplicity we consider here chordal SLE in which one looks for curves
starting and ending at fixed points x0, x∞ on the boundary ∂D of D. Recall that in the SLE
construction the curves are given a ‘time’ parametrization γ : [0, T ] → D, with γ0 = x0,
γT = x∞, such that the filtration associated to the knowledge of the curve up to time t ,
(Fγ

t )t∈[0,T ], is the filtration generated by the Loewner driving process (ξt )t∈[0,T ], i.e. Fγ
t =

σ {ξs : 0 ≤ s ≤ t} (for a reader not yet familiar with SLE, see Sect. 3). The expectation E[· · · ]
in the previous formula becomes the SLE measure. The mathematical definition of LD(·) is
related to what is known as natural parametrization of the SLE curve [16, 20, 21]. It should
satisfy the additivity property

LD(γ[0,t+s]) = LD(γ[0,t]) + LD\γ[0,t](γ[t,t+s]),

or even the stronger property that the natural parameterization of a piece of SLE can be
defined without reference to the domain, and L(γ[0,t+s]) = L(γ[0,t])+L(γ[t,t+s]), since L(γ )

is naively proportional to the number of steps of γ . We shall later define in a more general
context the notion of an interface energy and see that it possesses an analogous additivity
property.

The factor e−�LD(·) specifies the Radon-Nikodym derivative of the off-critical measure
with respect to the critical SLE measure so that the off-critical expectation of an observable
O is

E�[O] = Z−1
D

E[e−�LD(·)O] with ZD = E[e−�LD(·)].
If O is Fγ

t -measurable, that is if O only depends on the knowledge of the curve up to time
t , we have

E�[O] = E[MtO] with Mt := Z−1
D

E[e−�LD(·)|Fγ
t ]

since E[e−�LD(·)O] = E[E[e−�LD(·)O|Fγ
t ]] = E[MtO] because we can take out what is

known, E[e−�LD(·)O|Fγ
t ] = OE[e−�LD(·)|Fγ

t ].
In other words, the off-critical SLE (corresponding to the perturbation by the nat-

ural parametrization) is obtained by weighting the SLE expectation with Mt . As a con-
ditional expected value, Mt is by construction a martingale and M0 = 1 so that E� is
correctly normalized to be a probability measure. Notice that, modulo a few regularity
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assumptions, this is the framework in which Girsanov’s theorem applies, as will be dis-
cussed in Sect. 4.3. The additivity property of the natural parametrization implies that
Mt = e−�LD(γ[0,t])Z−1

D
E[e−�LD\γ[0,t] (·)] so that

Mt = e−�LD(γ[0,t]) ZD\γ[0,t]
ZD

. (1)

Mt can naturally be interpreted as the off-critical weight (relative to the critical one) given
to the curve γ[0,t]. It is made of two contributions, one is a ratio of partition functions in
the cut domain D \ γ[0,t] and in D, the other is an ‘interface energy’ contribution �LD(γ[0,t])
associated to the curve. We shall recover this decomposition in a more general (but more
formal) context of perturbed SLEs in following sections.

2.2 Loop Erased Random Walks

The second example deals with loop erased random walks (LERW) and it will be further
developed in Sect. 5. Let us first recall the definition of a LERW. Again let us start with a
lattice D

(a) of mesh a embedded in a domain D. Given a path W = (W0,W1, . . . ,Wn) on
the lattice its loop erasure γ is defined as follows: let n0 = max{m : Wm = W0} and set γ0 =
Wn0 = W0, next let n1 = max{m : Wm = Wn0+1} and set γ1 = Wn1 , and then inductively let
nj+1 = max{m : Wm = Wnj +1} and set γj = Wnj

. This produces a simple path γ = L(W) =
(γ0, γ1, . . . , γl) from γ0 = W0 to γl = Wn, called the loop-erasure of W , but its number of
steps l is in general much smaller than that of the original path W . We emphasize that the
starting and end points are not changed by the loop-erasing.

We point out that the above definition of loop erasure is equivalent to the result of a recur-
sive procedure of chronological loop erasing: the loop erasure of a 0 step path (W0) is itself,
γ = (W0) and if the erasure of W = (W0, . . . ,Wm) is the simple path L(W) = (γ0, . . . , γl)

then for the loop erasure of W ′ = (W0, . . . ,Wm,Wm+1) there are two cases depending on
whether a loop is formed on step m + 1. If Wm+1 /∈ {γ0, . . . , γl} then the loop erasure of
W ′ is γ ′ = (γ0, . . . , γl,Wm+1). But if a loop is formed, Wm+1 = γk for some k ≤ l (unique
because γ is simple), then the loop erasure of W ′ is γ ′ = (γ0, . . . , γk).

In this paper we shall be interested in paths starting at a boundary point x0 and ending on
a subset S of the boundary of D.

Statistics of LERW is defined by associating to any simple path γ a weight wγ =∑
W :L(W)=γ μ|W |, where the sum is over all nearest neighbor paths W whose erasures pro-

duce γ , and |W | denotes the number of steps of W . There is a critical value μc of the
fugacity at which the underlying paths W become just ordinary random walks. The partition
function

∑
γ wγ of LERWs from z to S in D can be rewritten as a sum over walks in the

domain D, started from z and counting only those that exit the domain through set S

Z
D;z;S
RW =

∑

γ simple path
from z to S in D

wγ =
∑

W walk from
z to S in D

μ|W |.

Written in terms of critical random walks, the partition function thus reads
Ez

RW[(μ/μc)
|W |1W

τRW
D

∈S], where τRW
D

denotes the exit time of the random walk W from D.

Critical LERW corresponds to the critical fugacity and is described by SLE2, see [24,
30, 35]. For μ < μc—which is the case we shall consider—paths of small lengths are more
favourable and renormalization group arguments tell that at large distances the path of small-
est length dominates. The off-critical theory in the scaling regime corresponds to non crit-
ical fugacity μ but approaching the critical one as the mesh size tends to zero. At fixed
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typical macroscopic size, the number of steps of typical critical random walks (not of their
loop erasures) scales as a−2, so that the scaling limit is such that � := −a−2 log(μ/μc)

is finite as a → 0, i.e. (μ − μc)/μc 
 −�a2 and � has scaling dimension 2 and fixes a
mass scale m 
 √

� and a correlation length ζ 
 1/m. In this scaling limit the weights be-

come (μ/μc)
|W | 
 e−�a2|W | and the random walks converge to two dimensional Brownian

motions B with a2|W | = a2τRW
D

converging to the times τD spent in D by B before exit-
ing. The off-critical partition function can thus be written as a Brownian expectation value
ZD;z;S

� −→ Ez
BM[e−�τD1BτD

∈S] as a ↓ 0. We may generalize this by letting � vary in space:

steps out of site w ∈ D are given weight factor μ(w) = μce
−a2�(w), in which case the parti-

tion function is

ZD;z;S
� = Ez

RW

[
e

−∑

0≤j<τRW
D

a2�(Wj )
1W

τRW
D

∈S

] −→
a↓0

Ez
BM

[
e− ∫ τD

0 �(Bs )ds1BτD
∈S

]
.

The explicit weighting by e−�τRW
D is transparent for the random walk, but becomes less

concrete for the LERW since the same path γ can be produced by random walks of different
lengths and by walks that visit different points. Compared to the previous example of SAW,
the description of the off-critical LERW theory via SLE martingales is thus more involved
but will (partially) be described in following sections.

2.3 Percolation

We will briefly also mention the case of off-critical percolation, just for some comparisons.
A way to study the scaling limit in the off-critical regime was suggested in [8].

It is most convenient to define interfaces in percolation on the hexagonal lattice. A con-
figuration ω of face percolation on lattice domain D with lattice spacing a is a colouring of
all faces (hexagons) to open (1) or closed (0), i.e. ω ∈ {0,1}FD , where FD is the set of faces.
The Boltzmann weight of a configuration is wω = p#open(ω)(1−p)#closed(ω)—that is hexagons
are chosen open with probability p independently. This hexagonal lattice face percolation
(triangular lattice site percolation) is critical at p = pc = 1/2 and has been proven to be
conformally invariant [32]. Exploration path, an interface between closed and open clusters,
is described in the continuum limit by SLE6. Note also that

ZD =
∑

ω

p#open(ω)(1 − p)#closed(ω) =
∏

z∈FD

(p + (1 − p)) = 1

for any p ∈ (0,1).
The off-critical regime now consists of changing the state of some faces that are macro-

scopically pivotal, i.e. affect connectivity properties to macroscopic distances. Informally,
these faces are such that from their neighborhood there exists four paths of alternating colors
to a macroscopic distance away from the point. The number of such points in the domain
D should be of order |D| × a−3/4, so that in order to have finite probability of changing a
macroscopically pivotal face we should take |p − pc| ∼ a3/4. We denote the perturbation
amplitude by � = a−3/4 log(

p

pc
).

For more about interfaces in off-critical percolation, the reader should turn to [8, 27]. The
above remarks will be enough for us to give a point of comparison.



LERW as an Example of Off-Critical SLEs 729

3 SLE Basics

The method of Schramm-Loewner evolutions (SLE) is a significant recent development in
the understanding of conformally invariant interfaces in two dimensions. We will describe
the main ideas briefly and informally, and refer the reader to the many reviews of the topic,
e.g. [3, 11, 13, 19, 33], among which one can choose according to the desired level of
mathematical rigour, physical intuition, emphasis and prerequisite knowledge.

3.1 Chordal SLE in the Standard Normalization

It was essentially shown in [30] that with assumptions of conformal invariance and domain
Markov property, probability measures on random curves in a simply connected domain D

from a point x0 ∈ ∂D to x∞ ∈ ∂D are classified by one parameter, κ ≥ 0. These random
curves are called chordal SLEκ .

The curves SLEκ are simple curves (no double points) iff 0 ≤ κ ≤ 4. For the purposes of
this paper simple curves are enough, so we restrict ourselves to this least complicated case.
To describe the chordal SLEκ , we note that by the assumed conformal invariance it suffices
to discuss it in the domain H = {z ∈ C : �m z > 0} (upper half plane) from 0 to ∞—for
any other choice of D, x0, x∞ one applies a conformal map f : H → D such that f (0) = x0,
f (∞) = x∞. The existence of such f follows from Riemann mapping theorem and well-
definedness of the resulting curve (f is only unique up to composition with a scaling z �→ λz

of H) from the scale invariance of chordal SLE.
So, let 0 ≤ κ ≤ 4 and let gt (z) be the solution of the Loewner’s equation

d

dt
gt (z) = 2

gt (z) − ξt

(2)

with initial condition g0(z) = z ∈ H and ξt = √
κBt a Brownian motion with variance pa-

rameter κ . The solution exists up to time t for z ∈ H \ γ [0, t], where γ : [0,∞] → H is
a random simple curve such that γ0 = 0 and γ∞ = ∞. This curve is called the (trace of)
chordal SLEκ . Furthermore, gt is the unique conformal map from H \ γ [0, t] to H with the
hydrodynamic normalization gt (z) = z +O(z−1) as z → ∞.

3.2 Chordal and Dipolar SLEs in the Half Plane

The Loewner’s equation (2) can be used to describe any simple curve in H starting from the
boundary ∂H = R in the sense that gt is the hydrodynamically normalized conformal map
from the complement of an initial segment of the curve to the half plane. In particular, a
chordal SLEκ in H from x0 ∈ R to x∞ ∈ R is obtained by letting ξ0 = x0, η0 = x∞ and ξt , ηt

solutions of the Itô differential equations

{
dξt = √

κ dBt + ρc

ξt −ηt
dt

dηt = 2
ηt −ξt

dt
that is ηt = gt (x∞)

with ρc = κ − 6, see e.g. [5, 31]. The maximal time interval of the solution is t ∈ [0, T ],
where T is a (random) stopping time and γT = x∞.

Another interesting case is a curve in H depending on the starting point x0 and two other
points x+ < x− such that x0 /∈ [x+, x−]. If the two points play a symmetric role, then the
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appropriate random conformally invariant curve is the dipolar SLEκ [4]. We again have the
Loewner’s equation (2) with ξ0 = x0, X±

0 = x± and Itô differential equations

{
dξt = √

κ dBt + ρd

ξt −X+
t

dt + ρd

ξt −X−
t

dt

dX±
t = 2

X±
t −ξt

dt
that is X±

t = gt (x±)

with ρd = κ−6
2 . Again dipolar SLE is defined for t ∈ [0, T ], where T > 0 is (random) stop-

ping time such that γT ∈ [x+, x−].
Both these examples can be understood from the point of view of statistical physics in

such a way that the (regularized) partition function for the model in H is Z(x0, x∞) = |x∞ −
x0|ρc/κ for the chordal SLEκ and Z(x0, x+, x−) = |x− − x0|ρd/κ |x+ − x0|ρd/κ |x− − x+|ρ2

d
/2κ

for the dipolar SLEκ . The driving process satisfies dξt = √
κ dBt + κ(∂ξ logZ)dt and other

points follow the flow gt . For discussion of more general SLE variants of this kind see [3, 5,
17, 18].

4 Probability Measures

4.1 Definition from Discrete Stat. Mech. Models

Let us first recall how measures on curves are defined in statistical physics models via Boltz-
mann weights. We have in mind Ising like models. Let C be the configuration space of a lat-
tice statistical model defined on a domain D. For simplicity we assume C to be discrete and
finite but as large as desired. Let wc , wc ≥ 0, c ∈ C, be the Boltzmann weights and ZD the
partition function, ZD := ∑

c∈C wc . By Boltzmann rules, the probability of a configuration c

is P[{c}] := wc/ZD, and this makes C a probability space.
In the present context, imagine that specific boundary conditions are imposed in such

a way as to ensure the presence of an interface in D for any sample—for simplicity we
consider only one interface. Given a curve γ in D, that we aim at identifying as an interface,
there exists a subset of configurations Cγ for which the actual interface coincides with the
prescribed curve γ . Again by Boltzmann rules, the probability of occurrence of the curve γ

as an interface, i.e. the probability of the event Cγ , is the ratio of the partition functions

PD[Cγ ] = ZD[γ ]/ZD. (3)

where ZD[γ ] is the conditioned partition function defined by the restricted sum

ZD[γ ] :=
∑

c∈Cγ

wc.

The Boltzmann weights may depend on parameters such that for critical values the sta-
tistical model is critical. We denote by P0

D
the probability measure at criticality, with Boltz-

mann weight w0, which in the continuum is expected to become an SLE measure if only
the statistics of the interface are considered. We generically denote by P�

D
the off-critical

measures, with Boltzmann weights w� . These probability measures differ by a density:

P�

D
= M

�

D
P0

D
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where, by construction, M
�

D
are defined as ratio of partition functions (again, no degrees of

freedom other than the shape of the interface are considered):

M
�

D
= Z

�

D
[γ ]/Z0

D
[γ ]

Z
�

D
/Z0

D

.

As in our previous examples, M
�

D
code for the off-critical weights relative to the critical

ones. On a finite lattice, they are typically well defined but their existence in the continuum
limit may be questioned. This has to be analysed case by case.

Assume as in the SLE context that the interfaces emerge from the boundary of D so
that the cut domains D \ γ are also domains of the complex plane. The restricted partition
function ZD[γ ] is then proportional to the partition function in the cut domain

Z
�

D
[γ ] = eE

�

D
(γ )Z

�

D\γ .

The extra term E�

D
(γ ) arises from the energy of the lattice bonds which have been cut from

D to make D \ γ . We call it the ‘interface energy’ of γ . It inherits from the domain Markov
property an additivity identity similar to the one satisfied by the natural parameterization,
i.e.

E�

D
(γ.γ ′) = E�

D
(γ ) + E�

D\γ (γ ′).

where γ.γ ′ is the concatenation of successive segments of the interface.
The off-critical weights then read:

M
�

D
(γ ) = eE

�

D
(γ )−E0

D
(γ )

Z
�

D\γ /Z0
D\γ

Z
�

D
/Z0

D

. (4)

This can be compared with (1). The presence of the energy term E�

D
(γ ) − E0

D
(γ ) in the con-

tinuum has also to be analysed case by case, see below. We furthermore point out that there
may be several natural choices of what to include in the Boltzmann weights and different
choices may lead to different E�

D
term5—to the extent that vanishing of this term can be a

question of convention.
To make contact with SLE, we also define a stochastic growth process that describes

the curve, in terms of which we define a filtration on C. Consider portions of interfaces
γ [0, t], where the index t specify say their lengths and will be identified with the ‘time’ of
the process. We may partition our configuration space according to these portions at time t .
The elements of the partition Qt are denoted by Cγ[0,t] , indexed by γ [0, t] in such a way that
c ∈ Cγ [0,t] if and only if the configuration c gives rise to γ [0, t] as a portion of the interface.
Thus we have C = ⋃

γ [0,t] Cγ [0,t], with Cγ [0,t] all disjoint. By convention Q0 is the trivial
partition with the whole configuration space C as its single piece. We assume these partitions
to be finer as t increases because specifying longer and longer portions of interfaces defines
finer and finer partitions. This means that for any s > t and any element Cγ [0,t] of the partition
at time t there exist elements of Qs which form a partition of Cγ [0,t] (corresponding to those
γ [0, s] which extend γ [0, t]). To any partition Qt is associated a σ -algebra Fγ

t on C, the

5An easy example is the Ising model. Suppose we have boundary conditions such that spins on the boundary
of the domain are fixed. Whether we include interactions of these fixed spins with each other in our Hamil-
tonian and therefore in ZD obviously has a dramatic effect on the interface energy term while it doesn’t
change the physics at all.
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one generated by the elements of this partition. Since these partitions are finer as ‘time’ t

increases, these constitute a filtration (Fγ
t )t≥0 on C, i.e. Fγ

t ⊂ Fγ
s for s > t . The fact that

we trivially get a filtration simply means that increasing ‘time’ t increases the knowledge
on the system. In the SLE context the information about the curve is encoded in the driving
process (ξt )t≥0, so this filtration (Fγ

t )t≥0 becomes the one generated by ξ .
On C with the filtration (Fγ

t )t≥0, we may define two processes using either the critical
P0 or the off-critical P� probability measures. They differ by M

�

D
(γ [0, t]) which can then be

written as a conditioned expectation with respect to the critical measure

M
�

D
(γ [0, t]) = Z0

D

Z
�

D

E

[
w�

w0
|Fγ

t

]

Thus M
�

D
(γ [0, t]) is a P 0

D
-martingale and the two processes differ by a martingale, which is

the context in which Girsanov theorem applies. It is similar to what we encountered in the
SAW example. One of our aims is to (try to) understand how this tautological construction
applies in the continuum.

4.2 Continuum Limit

4.2.1 Massive Continuum Limits in Field Theory

In the continuum limit, the critical model should be described by a conformal field theory
(CFT) and the critical measure on curves by SLE. The Boltzmann weights are e−S with S

the action. Off-critical perturbation is generated by a so-called perturbing field � so that

S = S0 + �

∫

D

d2z�(z, z̄)

with S0 the conformal field theory action.6 The ratio of the (off-critical) field theory partition
function to the CFT (critical) one is the expectation value

〈exp[−�
∫

D
d2z�(z, z̄)] (bdry cond.)〉D

〈(bdry cond.)〉D

(5)

where the brackets denote CFT expectations and the boundary conditions (bdry cond.) are
implemented by insertion of appropriate boundary operators, including in particular the op-
erators that generate the interface.

The coupling constant � has dimension 2−h−h, linked to the scaling dimension h+h of
the perturbing operator �. In our previous examples we determined explicitly this dimension
by looking at the way the scaling limit is defined. We got (the perturbing operators in all
cases are spinless, h = h):

(i) SAW: � has dimension dκ = 1 + κ/8, i.e. d8/3 = 4/3 for κ = 8/3 which is the value
corresponding to the SAW. The perturbing operator has dimension hκ + hκ = 1 − κ/8,
i.e. h = h = 1/3 for SAW. It is the operator �0;1 which is known to be the operator
testing for the presence of the SLE curve in the neighbourhood of its point of insertion

6For simplicity we assume that there is only one coupling constant and thus only one perturbing field. Fur-
thermore, renormalization properties of the field theory expression of the partition functions would need to
be analysed. We shall not dive into this problem in view of so (low and) formal level we are at.
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(in particular its one-point function gives the probability for the SLE curve to visit
a tiny neighbourhood of a point in the complex plane, [2]). This had to be expected
since the perturbation by the natural parametrization as described in the first section
just counts the number of lattice size boxes crossed by the curve.

(ii) LERW: the coupling constant has dimension 2 so that the perturbing operator has di-
mension h = h = 0 (up to logarithmic correction). We shall identify it either in terms
of symplectic fermions or in terms of Brownian local time in the following sections.

(iii) Percolation: the coupling constant has dimension 3/4 and therefore the perturbing op-
erator should have h = h = 5/8. This operator is the bulk four-leg operator �0,2 testing
for the presence of a macroscopically pivotal point.

4.2.2 Curves, RN-Derivatives and Interface Energy

Assuming (with possibly a posteriori justifications) that the discrete martingale (4) has a nice
continuum limit, one infers that the off-critical measure E�[· · · ] and critical SLE measure
E[· · · ] on curves differ by a martingale (the Radon-Nikodym derivative exists) so that

E�[X] = E[M�
t X]

for any Fγ
t -measurable observable with Mt given by the continuum limit of (4),

M
�
t = e�E�

D
(γ[0,t])

Z
�

D\γ[0,t]/Z
0
D\γ[0,t]

Z
�

D
/Z0

D

. (6)

We expect the above ratio of partition functions to become the field theory expression (5)
in the continuum. This is clearly a complicated (and useless) formula, but the existence of
M

�
t , at least in finite domain, is suggested by the physical intuition that typical samples of

the critical and off-critical interfaces look locally similar on scales small compared to the
correlation length which is macroscopic.

As far as we know, there is no simple field theoretical formula for the surface energy
term �E�

D
(γ[0,t]). However, to discuss whether this term is present or not we may consider

the discrete models and propose criteria.
In the discrete setup we can typically write the offcritical Boltzmann weight as w� =

w0e−∑
z �(a)(z)φ(z), where φ is a field by which we perturb the model. Under renormalization

it corresponds to the scaling field � in the sense that a−h−hφ(z) can in the limit a ↓ 0
be replaced by �(z). With our choice �(a)(z) = a2−h−h�(z), the sum

∑
z∈D(a) �

(a)(z)φ(z)

becomes
∫

D
�(z)�(z, z)d2z in the continuum. The martingale Mt can be written in terms of

ED(a)

[

exp

(

−
∑

z∈D(a)

�(a)(z)φ(z)

) ∣
∣
∣
∣ F

γ
t

]

.

For example for SAW we have φ(z) = 1 if the walk passes through z and φ(z) = 0 other-
wise. For the Ising model in near critical temperature, φ is the energy, most conveniently
defined on edges and not vertices, taking values ±1.

Let us assume, having in mind spin models with local interactions or SAW, that φ(z)

becomes determined (Fγ
t -measurable) for those z that are microscopically close to the curve

γ (a)[0, t]. Moreover we must assume the domain Markov property. We then get
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M
(a)
t = const.× exp

(

−
∑

z∈γ (a)[0,t]
a2−h−h�(z)φ(z)

)

× ED(a)\γ (a)[0,t]

[

exp

( ∑

z∈D(a)\γ (a)[0,t]
a2−h−h�(z)φ(z)

)]

.

The first part corresponds to the “interface energy” and the latter to the same model in the
remaining domain. Since the number of points microscopically close to the interface is of
order ∼ a−d (where d is the fractal dimension of the curve) and φ is typically bounded,
the interface energy term should vanish in the continuum if 2 − d − h − h > 0. In the
case 2 − d − h − h = 0 there may remain a finite interface energy in the continuum. If
2 − d −h − h < 0 some additional cancellations would have to take place if the expressions
were to have continuum limits.

In view of the above, we notice that for example for percolation h = h = 5/8 and
d = 7/4, so we must be careful. Indeed, the near critical percolation interfaces have been
considered in [27] and they have been shown not to be absolutely continuous with respect
to the critical ones. The SAW is just the marginal case: h = h = 1/3 and d = 4/3 so that
2 − d − h − h = 0. Indeed we expect a finite interface energy term LD(·) in the continuum.

However, the LERW doesn’t quite fit into the above setup as such—some long range
interactions are present. The field φ(z) is now the number of visits of the underlying walk
to z, denoted by �D(a) (z) (for a more formal definition, see Sect. 5.1). It splits to �D(z) =
�

(t)

D
(z) + �D\γ [0,t](z) where the former represents visits of the walk to z until the last time it

comes to γt and the latter represents the visits to z of the walk after this time. The quantity
�

(t)

D
is not Fγ

t -measurable, but conditional on Fγ
t it is independent of the walk after the last

time it came to γt , see e.g. [24]. Thus we have

M
(a)
t = const.×E

[

exp

(

− a2
∑

z∈D(a)

�(z)�
(t)

D(a) (z)

) ∣
∣
∣
∣ F

γ
t

]

× ED(a)\γ (a)[0,t]

[

exp

(

a2
∑

z∈D(a)\γ (a)[0,t]
�(z)�D(a)\γ (a)[0,t](z)

)]

.

The former term is again a property of the curve γ [0, t] and the domain: it can be written
in terms of random walk bubbles along the curve. The bubbles may occasionally reach far
away and thus they feel the values of � in the whole domain. In this sense an interface energy
is present in the LERW (with our conventions). The crucial difference is, however, that sites
microscopically close to the curve don’t contribute to the continuum limit. The values of
�

(t)

D(a) on the curve remain of constant order (or diverges logarithmically still in accordance

with h = h = 0) while the number of sites close to the curve is ∼ a−d with d = 5/4. The
contribution along the curve to the interface energy thus vanishes like ∼ a3/4. We will use
repeatedly the possibility to change between domains D and D \ γ [0, t] in integrals of type∫

�(z)�(z)d2z.

4.2.3 Field Theoretic Considerations of the RN-Derivative

If it were correct to use the field theory expression (5) in formula (6) in the continuum limit
without an interface energy term, we would have to first order in �

M
�
t = 1 + �

[∫

D\γ[0,t]
d2zNt(z) −

∫

D

d2zN0(z)

]

+ · · · (7)
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with

Nt(z) := 〈�(z, z̄)(bdry cond.)〉D\γ[0,t]
〈(bdry cond.)〉D\γ[0,t]

(8)

Here the (bdry cond.) refers to insertion of the appropriate boundary operators. For any
point z, this ratio Nt(z) of correlation functions is a SLE (local) martingale, see e.g. [4, 5]
and discussion in Sect. 5.2.3. This is a good sign since Mt , if it exists, should be a martingale
by construction. In the case of LERW, we will see also in Sect. 5.2.3 that Nt(z) thus defined
is a sum of two parts, precisely corresponding to �D\γ [0,t] and �

(t)

D
, and Nt(z) will indeed be

closely related to the Radon-Nikodym derivative Mt .

4.3 Off-Critical Drift Term and Girsanov’s Theorem

As argued above, the off-critical expectations are related to the critical ones by insertion of
the martingale M

�
t :

E�[X] = E[M�
t X]

for any Fγ
t -measurable observable. As in the argument for perturbed SAW’s, note that if

s > t and X is Fγ
t -measurable, E[M�

t X] = E[M�
s X] because M�• is a martingale. So this is

a consistent definition.
With some regularity assumptions, this is a situation in which one may apply Girsanov’s

theorem. With respect to the original measure E, ξt = √
κBt is a Brownian motion of

speed
√

κ . But for the measure E� , this is not true: Girsanov’s theorem quantifies how and
at the same time gives a “remedy”. Since M

�
t is a martingale, its Itô derivative is of the form

dM
�
t = M

�
t Vt dBt for some process Vt . The statement of Girsanov’s theorem is that with

respect to E� , the process
√

κB
�
t ≡ ξt − √

κ
∫ t

0 Vsds is a Brownian motion of speed
√

κ .
In other words, weighting the expectation by the martingale M

�
t adds a drift term to the

stochastic evolution of the driving process ξt .7

We shall not try to prove Girsanov’s theorem (see e.g. [28] for a readable mathematical
introduction or [14] for a more exhaustive reference), but we shall content to observe that
indeed d

dt
E�[B�

t ] = 0 because E�[B�
t ] ≡ E[M�

t B
�
t ] and an application of Ito’s formula for a

product yields d(M
�
t B

�
t ) = M

�
t (1+VtB

�
t )dBt whose expectation with respect to E vanishes.

To summarize, we write

dξt = √
κdB

�
t + √

κVt dt

where B
�
t is Brownian motion with respect to the off-critical measure P� .

In the present context the martingale, if it exists, is given by (6) and it seems hopeless
to compute and use the drift term directly. However, if the field theoretic expression (7) is
correct and we may omit contributions along the curve, we have to first order in perturbation
simply

Vt dBt = �

∫

D\γ [0,t]
d2z

(
dNt(z)

)
.

In this situation we’d have under P� the following drift, to first order in perturbation �

dξt = √
κdB ′

t + √
κ�

∫

D

d2z
(
d〈B,N〉t

)
,

7A simple illustration is given in Appendix.
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where 〈B,N〉t is the quadratic covariation of B and N , d〈B,N〉t = Vtdt . In Sect. 5.4 we will
argue in two different ways that the above formula applies to the LERW case. The explicit
knowledge of Nt(z) will of course make this more concrete.

The same change of drift applies to variants of SLE, where the driving process contains
a drift to start with. If a process has increments dξt = βdBt + αdt , it is only the βdBt part
of the increment that is affected by the change of probability measure.

5 Critical and Off-Critical LERW

In our attempt to gain insight to curves out of the critical point we now concentrate on the
concrete example of loop-erased random walks (LERW). It is worth noticing that the pow-
erful method of Schramm-Loewner evolutions (SLE) that applies very generally to critical
(conformally invariant) statistical mechanics in two dimensions, was in fact first introduced
with an application to LERW [30]. And one of the major early successes of SLEs was indeed
the proof that scaling limit of (radial) LERW is (radial) SLE2 [24]. We will not consider the
radial LERW, but very natural variants of the same idea, namely chordal and dipolar LERW:
in chordal setup the curves go from a boundary point x0 ∈ ∂D to another boundary point
x∞ ∈ ∂D, and in the dipolar setup from a boundary point x0 to a boundary arch S ⊂ ∂D.
Scaling limits of these and other LERW variants at criticality have been studied mathemati-
cally in [35].

5.1 Continuum Limit of LERWs

The discrete setting for LERWs was described in the introduction and we gave a formula for
the offcritical measure in terms of the random walks: the relative weight was

e
−∑

0≤j≤τRW
D

a2�(Wj )
. (9)

There’s an alternative way of writing the Boltzmann weights of the walks on lattice D
(a) of

mesh a. Let �(a)(z) = #{0 ≤ j < τRW
D(a) : W(a)

j = z} be the number of visits to z ∈ D
(a) by the

walk W(a). Then the Boltzmann weight is

∏

0≤j<τ rw
D(a)

μ(a)(Wj ) =
∏

z∈D(a)

μ(a)(z)�(z).

In terms of the �(z) = a−2 log(μc/μ
(a)(z)) we can write the partition function as an expected

value for a random walk W(a) started from w(a) ∈ D
(a)

ZD
(a);w(a);S(a)

� = Ew(a)

RW

[

exp

(

−
∑

z∈D(a)

a2�(z)�(a)(z)

)

1
W

(a)

τRW
D(a)

∈S

]

. (10)

We will take the continuum limit by letting the lattice spacing a tend to zero and choosing
D

(a) that approximate a given open, simply connected domain D. The starting points w(a)

approximate w ∈ D and the target set S(a) approximate S ⊂ ∂D. Simple random walks W(a)
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on the lattice should be scaled according to B
(a)
t = W

(a)

�t/a2�, so that B
(a)
t converges to two-

dimensional Brownian motion Bt . In the limit a2
∑

z∈D(a) becomes an integral
∫

D
d2z and

the partition function (10) becomes

ZD;w;S
� = Ew

BM

[

exp

(

−
∫

D

d2z�(z)�(z)

)

1BτD
∈S

]

, (11)

where �(z) needed no rescaling: it is the limit of �(z(a)) with z(a) ∈ D
(a) approximating

z ∈ D. This way �(z) becomes the Brownian local time: it has an interpretation as the occu-
pation time density

∫ τD

0
F(Bt )dt =

∫

D

�(z)F (z)d2z,

a discrete analogue of which we already used for F = � to obtain the alternative expression
for the Boltzmann weights.

By comparing (11) with (5), we see that the Brownian local time �(z), although not a CFT
operator, plays a role very analogous to the perturbation �. Similarly, “1exit in S” together
with “start from w” impose the boundary conditions.

Remark Our notation �(z) is not totally fair, but in line with other traditional field theory
notation. It would be more appropriate to consider � as a random positive Borel measure on
D with finite positive total mass τD. This measure is supported on the graph B[0, τD) ⊂ D

of the Brownian motion, which has Lebesgue measure 0 (although its Hausdorff dimension
is 2). Therefore � can not be absolutely continuous w.r.t. Lebesgue measure, as our notation
suggests: we’d like �(z) to be defined pointwise as the density of the occupation time � with
respect to Lebesgue measure. However, as usual in field theory, it is possible to make sense
of pointwise correlation functions as long as the insertions are not at coinciding points and
we will stick to the convenient notation �(z) although it seems to misleadingly suggest a
pointwise definition of �.

5.1.1 Continuum Partition Functions in the Half-Plane

We now choose as our domain the upper half plane H = {z ∈ C : �m z > 0} and as the
target set an interval S = [x+, x−]. The partition function (11) can be written in terms of a
Brownian expectation value

Zw;[x+,x−]
� = Ew

BM

[

exp

(

−
∫ τH

0
�(Bs)ds

)

1BτH
∈[x+,x−]

]

= Ew
BM

[

exp

(

−
∫

H

d2z�(z)�(z)

)

1BτH
∈[x+,x−]

]

with τH = inf{t ≥ 0 : Bt /∈ H} the exit time from the half-plane.
We would like to let the LERW start from the boundary, that is take z → x0 ∈ ∂D. In

the limit z → x0 the partition function vanishes like Z
x0+iδ;[x+,x−]
� ∼ δ × (· · · ) so to obtain a

nontrivial limit, we set

Zx0;[x+,x−]
� = lim

δ→0

1

δ
Ex0+iδ

BM

[

exp

(

−
∫ τH

0
�(Bs)ds

)

1BτH
∈[x+,x−]

]

(12)
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= lim
δ→0

1

δ
Ex0+iδ

BM

[

exp

(

−
∫

H

d2z�(z)�(z)

)

1BτH
∈[x+,x−]

]

. (13)

Furthermore, we may wish to shrink the target set S = [x+, x−] to a point x∞ so as to obtain
a chordal LERW, nontrivial limit is obtained if we set

Zx0;x∞
� = lim

δ,δ′→0

1

δδ′ E
x0+iδ

BM

[

exp

(

−
∫ τH

0
�(Bs)ds

)

1BτH
∈[x∞−δ′,x∞+δ′]

]

.

In the unperturbed case � = 0, we have Z
x0;[x+,x−]
0 = 1

π
( 1

x0−x− − 1
x0−x+ ) = 1

π

x−−x+
(x0−x−)(x0−x+)

and Z
x0;x∞
0 = 2

π
(x∞ − x0)

−2. The former is indeed the partition function of a dipolar SLE2

and the latter is that of chordal SLE2 from x0 to x∞, see [4, 5, 17, 18].
Partition functions with a nonzero perturbation will be considered in more detail in

Sect. 5.4.1.

5.1.2 The Perturbation and Conformal Transformations

The perturbation �(z) corresponds to an operator of dimension zero. According to a gen-
eral argument that can be found e.g. in [10], this fact already manifested itself when we
observed that no rescaling under renormalization was needed in its continuum definition,
a���(a)(v(a)) → �(z) with �� = 0. From its definition as a local time of 2-d Brownian mo-
tion we can also directly check how �(z) transforms under conformal transformations. The
local time �(z) gives us the occupation time in the following sense: if F : D → R, then

∫ τD

0
F(Bt )dt =

∫

D

F(z)�(z)d2z.

Taking in place of F an approximate delta function, we see that �(z) = ∫ τD

0 δ(Bt − z)dt .

Let f : D → D̃ be conformal and (Bt )t∈[0,τD] Brownian motion in D started from
w ∈ D and stopped upon exiting the domain τD = inf{t ≥ 0 : Bt /∈ D}. Then a direct
application of Ito’s formula tells us that (f (Bt ))t∈[0,τD] is a (two-component) martin-
gale in D̃, started from w̃ = f (w), and the quadratic variation of its components is
d〈f (B)j , f (B)k〉t = δj,k|f ′(Bt )|2 dt , (j, k = 1,2). The time changed process B̃s = f (Bt (s))

with ds = |f ′(Bt )|2 dt is a Brownian motion in D̃, started from w̃ = f (w).
Given F̃ : D̃ → R we set F = F̃ ◦ f : D → R and we have by definitions

∫

D̃

F̃ (z′)�
D̃;w′(z′)d2z′ =

∫ τ̃
D̃

0
F̃ (B̃s)ds

=
∫ τD

0
F(f (Bt ))|f ′(Bt )|2 dt

=
∫

D

F(z)|f ′(z)|2�D;w(z)d2z

If F̃ is an approximate delta function at z′ = f (z), then |f ′|2 × F is an approximate delta at
z and we conclude that � indeed transforms as a scalar

�f (D);f (w)(f (z))
in law= �D;w(z).

We will later in Sect. 5.2.2 identify the conformal field theory equivalent of �(z) and
exhibit its corresponding transformation properties.
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5.1.3 Brownian Local Time Expectations

The multipoint correlation functions of the perturbing operator �(z) are the basic building
blocks of the perturbative analysis of LERW near critical point since we can expand the
partition function (13) in powers of the small perturbation � = ε�̃

Z
x0;[x+,x−]
ε�̃

= lim
δ→0

1

δ
Ex0+iδ

BM

[

e−ε
∫
H

�̃(z)�(z)d2z1BτD
∈[x+,x−]

]

= Z
x0;[x+,x−]
0 +

∞∑

n=1

εn

n!
∫

· · ·
∫

d2z1 · · ·d2zn�̃(z1) · · · �̃(zn)

×
(

lim
δ→0

1

δ
Ex0+iδ

BM

[

�(z1) · · ·�(zn)1BτD
∈[x+,x−]

])

. (14)

Next we will compute these explicitly and afterwards we’ll find the field theoretic interpre-
tation.

For a smooth compactly supported function f : D → R, let �f = ∫ τD

0 f (Bt )dt . Consider
the correlation function

CS
f1,...,fn

(w) = Ew
BM

[( n∏

j=1

�fj

)

1BτD
∈S

]

.

If σ ≤ τD is a stopping time of the Brownian motion, then write �f = ∫ σ

0 f (Bt )dt +∫ τD

σ
f (Bt )dt = �

≤σ
f + �>σ

f . The part �
≤σ
f is FBM

σ -measurable while �>σ
f depends on FBM

σ

only through Bσ . Obviously we have �
≤0
f = 0 and d�

≤t∧τD

f = 1t≤τD
f (Bt )dt . By the strong

Markov property we have

Ew
BM

[( n∏

j=1

�fj

)

1BτD
∈S

∣
∣
∣
∣ F

BM
t∧τD

]

=
∑

J⊂{1,...,n}

(∏

j∈J

�
≤t∧τD
fj

)

× CS
(fj )j∈�J

(Bt∧τD )

and this is a martingale by construction. It is also a continuous semimartingale and its Itô
drift

∑

J⊂{1,...,n}

{∑

k∈J

1t≤τD
fk(Bt )

( ∏

j∈J\{k}
�

≤t∧τD

fj

)

× CS
(fj )j∈�J

(Bt∧τD
)

+
(∏

j∈J

�
≤t∧τD

fj

)

× 1

2
1t≤τD

�CS
(fj )j∈�J

(Bt∧τD
)

}

should vanish. At t = 0 we have simplifications due to �
≤0
f = 0 and 10≤τD

= 1, so this reduces
to a useful differential equation for CS

f1,...,fn

1

2
�CS

f1,...,fn
(w) +

n∑

k=1

fk(w)CS
(fj )j �=k

(w) = 0
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in terms of correlation functions of type CS
f1,...,fn−1

. Boundary conditions for n ≥ 1 are zero,

and for n = 0 case the correlation function is just the harmonic measure of S, CS
∅ (w) =

HD(w;S).
We are interested in replacing fj (z) by δ(z−zj ), in which case we denote the correlation

function by CS(w; z1, . . . , zn). It is then straightforward to solve the recursion and the result
is

CS(w; z1, . . . , zn) = Ew
BM

[

�(z1) · · ·�(zn)1BτD
∈S

]

=
∑

π∈Sn

GD(w, zπ(1))

( n∏

j=2

GD(zπ(j−1), zπ(j))

)

HD(zπ(n), S),

where GD is the Green’s function �zGD(z,w) = −2δ(z − w) with Dirichlet boundary con-
ditions GD(z,w) → 0 as z → ∂D. To get the multipoint correlation function for Brownian
motion conditioned to exit through S, we must divide by Ew

BM[1BτD
∈S] = HD(w,S), which

we remind is also the partition function at criticality. The ratio has a nontrivial limit as we
take w to the boundary of the domain. Alternatively, we can regularize both the correlation
function and the partition function in the same manner, as suggested also by formula (14).
In the half-plane H with S = [x+, x−], regularized as in Sect. 5.1.1 we have

Cx0;[x+,x−](z1, . . . , zn)

:= lim
δ→0

1

δ
Ex0+iδ

BM

[
�(z1) · · ·�(zn)1BτD

∈[x+,x−]
]

=
∑

π∈Sn

KH(x0, zπ(1))

( n∏

j=2

GH(zπ(j−1), zπ(j))

)

HH(zπ(n); [x+, x−]), (15)

with explicit expressions

GH(z,w) = − 1

π
log

∣
∣
∣
∣
z − w

z − w

∣
∣
∣
∣

KH(x0, z) = − 2

π
�m

(
1

z − x0

)

HH(z, [x+, x−]) = 1

π
�m

(

log
z − x−
z − x+

)

.

It is convenient to represent the terms in this result diagrammatically as in Fig. 1. The chordal
case is obtained by limit δ′ → 0 with choice x± = x∞ ∓ δ′,

Cx0;x∞(z1, . . . , zn)

:= lim
δ→0

1

δδ′ E
x0+iδ

BM

[
�(z1) · · ·�(zn)1BτD

∈[x∞−δ′,x∞+δ′]
]

=
∑

π∈Sn

KH(x0, zπ(1))

( n∏

j=2

GH(zπ(j−1), zπ(j))

)

KH(x∞, zπ(n)). (16)
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Fig. 1 Example diagrams representing the terms in the local time multipoint correlation functions. Dipolar
case (15) is on the left and chordal case (16) on the right

5.2 On Conformal Field Theory of LERWs

It is known from general arguments that SLEκ corresponds to conformal field theory of
central charge c = (6−κ)(3κ−8)

2κ
, [1], so that LERWs should have c = −2. But we can be more

specific about the CFT appropriate for our case.
First of all, LERWs are “dual” to uniform spanning trees (UST) [24, 30, 34], for which

fermionic field theories have been given [9], see also [25]. Indeed a field theory of free
symplectic fermions would have central charge c = −2, [15]. The theory is Gaussian. It has
two basic fields χ+ and χ− whose correlation functions in domain D (Dirichlet boundary
conditions) are determined by

〈χα(z, z)χβ(w,w)〉 = J αβGD(z,w),

with J++ = 0 = J−−, J+− = 1 = −J−+, and the Wick’s formula.
The fields χα(z, z) are fermionic but scalars, meaning that they transform like scalars

under conformal transformations. We shall also be interested in the composite operator
:χ−χ+: which has to be defined via a point splitting to remove the short distance singu-
larity

:χ−χ+: (z, z) = lim
w→z

χ−(z, z)χ+(w,w) − 1

2π
log |z − w|2

Due to this regularisation, :χ−χ+: transforms with a logarithmic anomaly under conformal
transformations:

:χ−χ+: (z, z) → :χ−χ+: (g(z), g(z)) − 1

2π
log |g′(z)|2. (17)

The stress tensor is T (z) = 2π :∂zχ
+(z, z)∂zχ

−(z, z): with the normal ordering defined
by a point splitting similar as above. It is easy to verify that both operators ∂zχ

α are operators
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of dimension 1 satisfying the level two null vector equation (L−2 − 1/2L2
−1)∂zχ

α = 0 with
Ln, T (z) = ∑

n Lnz
−n−2, the Virasoro generators. It is this equation which helps identifying

the symplectic fermions as the CFT associated to LERW. We will be able to identify some
other fields with natural LERW quantities, although there are some important ones for which
a good understanding is still lacking (to us).

5.2.1 Boundary Changing Operators

The partition functions without perturbation involve only boundary operators that account
for the LERW starting from x0 ∈ R and aiming at S ⊂ R. We will identify them below.

We consider the symplectic fermion field theory in the upper half plane H. Let us define
the boundary fields ψ± as normal derivatives of χ± on the real axis

ψ±(x0) = lim
δ→0

1

δ
χ±(x0 + iδ, x0 − iδ).

The level two null field equation says the fields ψ+ and ψ− can account for starting point
and end point of SLE2 curves [1, 4, 5] (see also Sect. 5.2.3). And indeed, the two point
function 〈ψ+(x0)ψ

−(x∞)〉 = 2
π
(x∞ −x0)

−2 reproduces our partition function in the chordal
setup, compare with Sects. 3 and 5.1.1.

Let us then remark that the dipolar LERW from x0 to [x+, x−], conditioned to hit a point
x∞ ∈ [x+, x−] is just the chordal LERW from x0 to x∞ as follows directly from the defini-
tions. It has been pointed out in [6] that κ = 2 is the only value for which the corresponding
property holds for dipolar and chordal SLEκ .

Following the above remark, we decompose the dipolar probability measure according
to the endpoint x∞ ∈ [x+, x−]

P0
x0,[x+,x−] =

∫ x−

x+
dx∞A(x∞)P0

x0;x∞ ,

where A is the probability density for LERW to end at x∞

A(x∞) = lim
δ,δ′↓0

1
2δ′ H(x0 + iδ; [x∞ − δ′, x∞ + δ′])

H(x0 + iδ); [x+, x−]) =
1
2 Zx0;x∞

Z
x0;[x+,x−]
0

= (x0 − x−)(x0 − x+)

(x− − x+)(x∞ − x0)2
. (18)

As this is just a ratio of the correlation functions, we may say that the dipolar boundary
changing operators are ψ+(x0) and 1

2

∫ x−
x+ ψ−(x∞)dx∞. Indeed, the partition function is

reproduced by

〈

ψ+(x0)

(
1

2

∫ x−

x+
ψ−(x∞)dx∞

)〉

= 1

π

x− − x+
(x− − x0)(x+ − x0)

= Z
x0;[x+,x−]
0 .

5.2.2 Field Theory Representation of Brownian Local Time

In Sect. 5.1.3 we derived the expressions (15) and (16) for Brownian local time correla-
tions. We recall that in the chordal case, the multipoint correlation function in the upper half
plane is
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Fig. 2 Example diagram for a term appearing in the correlation function (20) of fields :χ−χ+:H . The
component containing boundary points x0 and x∞ corresponds to J whereas the rest of the connected com-
ponents correspond to J1, . . . , Js . Within each component Jr we sum over inequivalent cyclic orderings πr

of it

Cx0;x∞(z1, . . . , zn)

=
∑

π∈Sn

KH(x0, zπ(1))

( n∏

j=2

GH(zπ(j−1), zπ(j))

)

KH(x∞, zπ(n)).

The two point functions of symplectic fermions involve the same building blocks
〈χ+(z)χ−(w)〉 = GH(z,w) and 〈ψ+(x)χ−(z)〉 = 〈χ+(z)ψ−(x)〉 = KH(x; z). Thus the for-
mula is clearly reminiscent of what Wick’s formula gives for correlations of the composite
operator

:χ−χ+:D (z) = lim
z′,z′′→z

(

χ−(z′)χ+(z′′) − GD(z′, z′′)
)

, (19)

where we substract the full two point function in domain D so that in the Wick’s formula no
terms with pairing within normal orderings appear.8 Inserting also the boundary changing
operators ψ+(x0) and ψ−(x∞) for the chordal case, we get

〈ψ+(x0) :χ−χ+:H (z1) · · · :χ−χ+:H (zn)ψ
−(x∞)〉

=
∑

J⊂{1,...,n},π∈SJ

J1,...,Js partition of �J
πr cyclic ordering of Jr , r = 1, . . . , s

s∏

r=1

(
GH(zπr (1), zπr (2)) · · ·GH(zπr (|Jr |), zπr (1))

)

×
(

KH(x0, zπ (1))

( |J |∏

j=2

GH(zπ(j−1), zπ(j))

)

KH(x∞, zπ(|J |))
)

, (20)

8This domain dependent normal ordering (19) is not a very natural thing to do in field theory, but it has the
advantage of simplifying the Wick’s formula.
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which is represented diagrammatically in Fig. 2. The terms with J = {1,2, . . . , n} are what
appear in the correlation function (16) and what are illustrated in Fig. 1, the rest of the
terms correspond to disconnected diagrams. To cure this, we must divide out a loop soup
contribution that cancels the disconnected diagrams. We indeed have

Zx0;x∞
� = lim

δ→0

1

δδ′ E
x0+iδ

BM

[
e−ε

∫
H

�̃(z)�(z)d2z1BτH
∈[x∞−δ′,x∞+δ′]

]

= 〈ψ+(x0)e
−ε

∫
H

�̃(z) :χ−χ+:H (z)d2zψ−(x∞)〉
〈e−ε

∫
H

�̃(z) :χ−χ+:H (z)d2z〉
in the sense of formal expansion in powers of ε. In this formula, however, the precise normal
ordering prescription of χ−χ+ doesn’t matter: had we made another substraction of the
logarithmic divergence, the result would differ by a constant and would cancel in the ratio

Zx0;x∞
� = 〈ψ+(x0)e

−ε
∫
H

�̃(z) :χ−χ+: (z)d2zψ−(x∞)〉
〈e−ε

∫
H

�̃(z) :χ−χ+: (z)d2z〉 , (21)

so in particular we may use the ordinary normal ordering prescription.
From the chordal case formulas (16) and (21) we can immediately derive also a CFT

formula for the dipolar case by observing that
∫ x−

x+ KH(x∞, z)dx∞ = 2HH(z; [x+, x−]). This
reads

Zx0;[x+,x−]
� = 〈ψ+(x0)e

−ε
∫
H

�̃(z) :χ−χ+: (z)d2z
(

1
2

∫ x−
x+ ψ−(x∞)dx∞

)〉
〈e−ε

∫
H

�̃(z) :χ−χ+: (z)d2z〉 .

5.2.3 SLE Martingales from Conformal Field Theory

By a two step averaging argument one can construct tautological martingales for growth
processes describing random curves, see for example [4, 5]. One splits the full statistical
average to average over configurations that produce a given initial segment of a curve γ [0, t],
which is then still to be averaged over all possible initial segments. The information about
the initial segment is precisely what the SLE filtration Ft represents. If the statistical average
can be replaced by CFT correlation function in the continuum limit, one concludes that for
any CFT field O (e.g. product of several primary fields O = �α1(z1, z1) · · ·�αn(zn, zn)) the
ratio

〈O(bdry cond.)〉
Ht

〈(bdry cond.)〉
Ht

is a martingale, where 〈· · · (bdry cond.)〉Ht represents CFT expectation in domain Ht =
H \ γ [0, t] with insertions of boundary changing operators to account for the boundary
conditions. In the denominator, the expected value of the boundary operators corresponds to
the partition function. We emphasize that the operator O is constant in time—time depen-
dency arises only through the changing domain Ht and the operator placed at the tip γt of
the curve. For example attempting to use O = :χ−χ+: Ht (the closest analog in field theory
of the local time �(z)) will not result in a (local) martingale because the normal ordering
(subtraction) is time dependent.

The above argument has a converse, too. If one considers SLE variant with driving
process dξt = √

κ dBt + κ∂ξ logZH dt and uses transformation properties of CFT fields,
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then by a direct check one concludes that ratios 〈O〉bdry cond./Z are local martingales pro-
vided the boundary changing operators include a field ψ at the tip γt that has a vanishing
descendant (−4L−2 + κL2

−1)ψ = 0.
For the continuum limit of chordal and dipolar LERWs we have identified the appropriate

boundary changing operators in Sect. 5.2.1 and therefore the ratios

〈Oψ+(γt )ψ
−(x∞)〉Ht

〈ψ+(γt )ψ−(x∞)〉Ht

and
〈Oψ+(γt )

∫ x−
x+ ψ−(x∞)dx∞〉Ht

〈ψ+(γt )
∫ x−

x+ ψ−(x∞)dx∞〉Ht

should produce martingales in the two cases respectively. We will in particular be in-
terested in inserting the perturbing operator :χ−χ+: (z), since to first order the correla-
tion functions in presence of the perturbation are given by extra insertion of O = (1 −
ε
∫

H
�̃(z) :χ−χ+: (z)d2z).

In the half-plane Wick’s theorem gives the result

1

2

〈

:χ−χ+:H (z)ψ+(γt )

∫ x−

x+
ψ−(x∞)dx∞

〉

H

= KH(x0; z)HH(z; [x+, x−])

which we recognize also as the local time correlation function Cx0;[x+,x−](z), because the
one point function has no disconnected diagrams.9 Recall the logarithmic anomaly in the
transformation property of :χ−χ+: (z), (17) to get

N
x0;[x+,x−]
t (z) = 〈 :χ−χ+: (z)ψ+(γt )

∫ x−
x+ ψ−(x∞)dx∞〉Ht

〈ψ+(γt )
∫ x−

x+ ψ−(x∞)dx∞〉Ht

=
〈( :χ−χ+: (gt (z)) + 1

π
log |g′

t (z)|)ψ+(ξt )
∫ X−

t

X+
t

ψ−(x∞)dx∞〉H

〈ψ+(ξt )
∫ X−

t

X+
t

ψ−(x∞)dx∞〉H

= − 1

π
log

2�m (gt (z))

|g′
t (z)| + KH(ξt ;gt (z))HH(gt (z); [X+

t ,X−
t ])

Z
ξt ;[X+

t ,X−
t ]

0

, (22)

where X±
t = gt (x±). The process Nt(z) should be a local martingale by construction and

one can indeed verify this directly by Itô’s formula.
The formula (22) has a natural probabilistic interpretation, too: as a conditional expected

value of the local time of the underlying random walk at z. The two parts correspond to the
splitting �H = �H\γ [0,t] +�

(t)

H
. The second term is indeed, by conformal invariance of the local

time �(z), just the expected value of the local time of Brownian motion in H \ γ [0, t] started
from γt and conditioned to exit through [x+, x−]. The first term is At = − 1

π
logρHt (z),

where ρHt (z) = 2�m (gt (z))

|g′
t (z)| is the conformal radius of z in H \ γ [0, t]. In particular the first

term is an increasing process. Recall that in the discrete setup, conditional on loop erasure
producing a given initial segment of the curve, the second term corresponds to the expected
local time at z of the underlying random walk after its last visit to the tip of the curve, see
[24] whereas the first part, more precisely At − A0, should be interpreted as the expected
local time at z of the (erased) loops until the last visit to the tip. The fact that At is increasing

9We can then use :χ−χ+:H (z) = :χ−χ+: (z) + 1
π log |z − z| to compute the one point function

〈 :χ−χ+: (z)ψ+(γt )
1
2

∫ x−
x+ ψ−(x∞)dx∞〉H = KH(x0; z)HH(z; [x+, x−]) − Z

x0;[x+,x−]
0 × 1

π log |z − z|.
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is then natural since as time increases we erase more loops. Seen this way, At − A0 is also
what we called the (nonlocal) interface energy of the LERW in Sect. 4.2.2.

It has been argued [23] that it should be possible to add to SLE2 Brownian bubbles so as
to reconstruct the underlying Brownian motion. We notice indeed that

At − A0 = 4

π

∫ t

0

(�m gs(z))
2

|gs(z) − ξs |4 ds,

where the integrand is morally twice the “expected” local time at z of a Brownian bubble
in H \ γ [0, s] from γs . Actually Brownian bubbles don’t form a probability measure but
an infinite measure. If we normalize it as in [23] (but we must not forget about the time
parametrization of the bubbles, see [22]), the integral with respect to the bubble measure of
the local time is π

2 K(ξs;gs(z))
2 = 2

π
(�m gs(z)/|gs(z)−ξs |2)2. The factor two is an intensity

at which we need to add the bubbles to the curve—it is minus the central charge, λ = −c = 2.
In the chordal case we obtain similar formulas—in fact they can also be recovered by

limit of the dipolar case. For the record, we give the (local) martingale

N
x0;x∞
t (z) = − 1

π
log

2�m (gt (z))

|g′
t (z)| + KH(ξt ;gt (z))KH(ηt ;gt (z))

Z
ξt ;ηt

0

,

where ηt = gt (x∞). It is in particular worth noticing that the “expected local time of the
erased loops” At − A0 has the same formula and depends only on the shape of the “initial
segment of the loop-erasure” γ [0, t].

5.3 Off-Critical LERW and Massive Symplectic Fermions

The conformal field theory of LERW is the symplectic fermion theory with central charge
c = −2. As we have argued when defining the scaling limit of the LERW, going off-
criticality amounts to perturbing by an operator of scaling dimension 0. In terms of Brown-
ian motion the off-critical weighting is given by the local time which is closely linked to
the composite operator : χ−χ+ : as we’ve shown above, cf. (21) and Nt(z) in Sect. 5.2.3. In
fact, as the perturbing field is : χ+χ− : and the action for the off-critical theory thus reads

(const.)
∫

H

d2z[Jαβ ∂̄χα∂χβ + 8�(z)Jαβχαχβ],

the need to divide by 〈e− ∫
�(z) :χ−χ+: (z)d2z〉 stems just from the normalization of the new

measure. We remark in particular that the off-critical theory is still Gaussian with two point
function

〈χα(z, z)χβ(w,w)〉� = J αβG
�

H
(z,w),

where (−�(w) + 1
2�w)G

�

H
(z,w) = −2δ(z − w).

For simplicity we look at the theory in the upper half plane. The boundary conditions are
identical to that of the critical theory.

Suppose, as has been argued, that the off-critical measure P�

H
on curves differs from the

critical one by a Radon-Nikodym derivative Mt given by (6). We have been able to compute
the limit of partition functions in (14) & (15) or alternatively in (21), and we know that the
energy term �EH(γ [0, t]) is monotone in t , thus of finite variation (can not have a dBt like
increment). This is in fact enough to determine what the energy term is in our case: it must
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compensate the drift so that Mt becomes a martingale and it is not difficult to check that this
requires

e�EH(γ [0,t]) = 〈exp(− ∫
d2z�(z) :χ−χ+: (z))〉Ht

〈exp(− ∫
d2z�(z) :χ−χ+: (z))〉H

≈ 1 − ε
1

π

∫

d2z�̃(z) log

(
ρHt (z)

ρH(z)

)

. (23)

The change in interface energy is therefore to first order given by the bubble soup At − A0

as we could have expected. Furthermore and importantly, the field theoretic formula (7) for
Mt to first order holds with �(z) = :χ−χ+: (z).
5.3.1 Subinterval Hitting Probability from Field Theory

We will now show how to use the field theory interpretation to compute probabilities for
the off-critical LERW. We work in the dipolar setup, a LERW from x0 to [x+, x−] in H,
and ask what is the probability for the endpoint of the LERW to be on a subinterval S =
[x ′+, x ′−] ⊂ [x+, x−]. In the next section we derive the same result from direct probabilistic
considerations.

From Boltzmann rules, this probability is the ratio of two partition functions: the partition
of LERW exiting on [x ′+, x ′−] by that of LERW exiting on [x+, x−]. In field theory this
becomes the ratio of two correlation functions but with different boundary conditions (or
equivalently, insertion of boundary changing operators at different locations). Hence, this
hitting probability is expected to be:

P�

ξ0;[x+,x−]
[
end in [x ′

+, x ′
−]] =

〈ψ+(ξ0)
1
2 (

∫ x′−
x′+

ψ−(x∞)dx∞)〉�
〈ψ+(ξ0)

1
2 (

∫ x−
x+ ψ−(x∞)dx∞)〉�

where the operator ψ+(ξ0) is the operator which creates the LERWs and the operator
1
2

∫ x′−
x′+

ψ−(x∞)dx∞ or 1
2

∫ x−
x+ ψ−(x∞)dx∞ are those conditioning the curves to stop on the

interval [x ′+, x ′−] or [x+, x−], so that they impose the boundary conditions.

At criticality, the correlation function 〈ψ+(ξ0)
1
2

∫ x′−
x′+

ψ−(x∞)dx∞〉0 is computable from

the limit behavior of the harmonic measure HH(z0, [x ′+, x ′−]) as z0 → ξ0 so that

〈

ψ+(ξ0)

(∫ x′−

x′+
ψ−(x∞)dx∞

)〉

0

= 2

π

(x ′− − x ′+)

(ξ0 − x ′−)(ξ0 − x ′+)
.

The hitting probability in H at the conformal point is thus

P0
ξ0;[x+,x−]

[
end in [x ′

+, x ′
−]] = (x ′− − x ′+)(ξ0 − x−)(ξ0 − x+)

(x− − x+)(ξ0 − x ′−)(ξ0 − x ′+)
.

Off-criticality, the correlation functions 〈ψ+(ξ0)
1
2 (

∫ x′−
x′+

ψ−(x∞)dx∞)〉� are computable

via the limiting behavior of 〈χ+(z0)
1
2 (

∫ x′−
x′+

ψ−(x∞)dx∞)〉� with z ∈ H but approaching the

real axis, z → ξ0. The off-critical probability is thus expected to be

P�

ξ0;[x+,x−]
[
end in [x ′

+, x ′
−]] = lim

z→ξ0

�
�

H,[x′+,x′−](z)

�
�

H,[x+,x−](z)
(24)
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with �
�

H,[x′+,x′−](z) solution of (−�(z) + 1
2�z)�

�

H,[x′+,x′−](z) = 0. To find the boundary con-

ditions observe that the leading term in the OPE χ+(z)ψ−(x∞) ∼ −2
π

�m ( 1
z−x∞ ) remains

unchanged in the off-critical theory. One finds that �
�

H,[x′+,x′−](z) → 1 for z → (x ′+, x ′−)

and �
�

H,[x′+,x′−](z) → 0 for z → R \ [x ′+, x ′−]. Both �
�

H,[x′+,x′−] and �
�

H,[x+,x−] vanish at

ξ0 ∈ R \ [x+, x−], but their ratio tends to a finite limit.
In the following section, we shall present a probabilistic derivation of this field theory

inspired formula.

5.3.2 Probabilistic Derivation of Subinterval Hitting Probability

Above we gave a field theory flavoured discussion of the probability that a perturbed LERW
in H from x0 to [x+, x−] ends on a subinterval [x ′+, x ′−] ⊂ [x+, x−]. It is easy to justify the
formulas obtained there by computations with Brownian motion.

Most importantly, we notice that the question of endpoint is a property of the (weighted)
random walk W that we then decided to loop erase. Indeed, by construction the loop erasing
procedure doesn’t change the starting point and end point. Therefore we only need to find
the subinterval hitting probability of the weighted random walk, which in the continuum
boils down to a Brownian motion computation.

We thus consider a walk in the upper half plane, started from x0 ∈ R (or an approximation
to it) and conditioned to exit the half plane through [x+, x−] ⊂ R (a lattice approximation of
it). The walk (W

(a)
j )

τ
H(a)

j=0 is weighted by exp(−∑
j a2�(a)(W

(a)
j )) relative to the symmetric

random walk, so the probability of an event E is

P�

w;[x+,x−][E] =
Ew

RW[1
E∩{W(a)

τ
H(a)

∈[x+,x−]} exp(−∑
j a2�(a)(W

(a)
j ))]

Ew
RW[1

W
(a)
τ
H(a)

∈[x+,x−] exp(−∑
j a2�(a)(W

(a)
j ))] .

Take E to be the event W(a)
τ
H(a)

∈ [x ′+, x ′−] ⊂ [x+x−]. The continuum limit a ↓ 0 of the prob-

ability of exiting through [x ′+, x ′−] ⊂ [x+, x−] is then computed using Brownian motion

P�

w;[x+,x−]
[
end in [x ′

+, x ′
−]] = Ew

BM[e− ∫
�(Bs )ds1BτH

∈[x′+,x′−]]
Ew

BM[e− ∫
�(Bs )ds1BτH

∈[x+,x−]]
. (25)

If � ≡ 0, the numerator and denominator are nothing but the harmonic measures of [x ′+, x ′−]
and [x+, x−] respectively, and the field theoretic formula at criticality is justified. For non-
zero �, we can get a partial differential equation for the numerator and denominator by
Feynman-Kac formula: denoting �(w) = Ew

BM[e− ∫
�(Bs )ds1BτH

∈[x′+,x′−]] we get a martingale

Ew
BM

[

exp

(

−
∫ τH

0
�(Bs)ds

)

1BτH
∈[x′+,x′−]

∣
∣
∣
∣ F

BM
t∧τH

]

= exp

(

−
∫ t∧τH

0
�(Bs)ds

)

× Ẽ
Bt∧τH
BM

[

exp

(

−
∫ τ̃H

0
�(B̃s)ds

)

1B̃τ̃H
∈[x′+,x′−]

]

= exp

(

−
∫ t∧τH

0
�(Bs)ds

)

× �(Bt∧τH
)

and the requirement for the Itô drift of this to vanish is

0 = −�(w)�(w) + 1

2
�w�(w).
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This is supplemented by the boundary conditions that are obvious from the definition of �

�(w) →
{

0 as w → R \ [x ′+, x ′−]
1 as w → (x ′+, x ′−).

The ratio (25) is thus just what we argued from field theory.
If we are interested in small perturbations, it is useful to take � = ε�̃ and write the solu-

tion � as a power series in ε

�(w) =
∞∑

k=0

εk�k(w).

The zeroth and first orders are explicitly

�0(w) = 1

π
�m log

w − b

w − a
= HH(w; [a, b])

�1(w) = −
∫

H

d2z�̃(z)HH(z; [a, b])GH(w, z).

Furthermore we want the walk to start from the boundary, at x0. The limit w → x0 of �

vanishes, but the ratio (25) remains finite. We find that the probability to end in [x ′+, x ′−] ⊂
[x+, x−] is, to first order in ε, given by

P�

x0;[x+,x−]
[
end in [x ′

+, x ′
−]]

= Z
x0;[x′+,x′−]
0

Z
x0;[x+,x−]
0

+ ε

∫

H

d2z�̃(z)KH(x0; z)
{

− HH(z; [x ′+, x ′−])
Zx0;[x+,x−]

+ Zx0;[x′+,x′−]HH(z; [x+, x−])
(Zx0;[x+,x−])2

}

= (x ′+, x ′−)(x+ − x0)(x− − x0)

(x− − x+)(x ′+ − x0)(x
′− − x0)

+ ε
2

π

∫

H

d2z�̃(z)�m

(
1

z − x0

){
(x+ − x0)(x− − x0)

x− − x+
�m

(

log
z − x ′+
z − x ′−

)

− (x ′+ − x ′−)(x+ − x0)
2(x− − x0)

2

(x− − x+)2(x ′+ − x0)(x
′− − x0)

�m

(

log
z − x−
z − x+

)}

. (26)

5.4 Link with Perturbed SLEs

5.4.1 Perturbation to Driving Process Using Hitting Distribution

Suppose that the perturbed LERW has a continuum limit that is absolutely continuous with
respect to SLE2 (for us what is important is that the measures on initial segments γ [0, t]
are absolutely continuous so that the driving processes differ only by a drift term). We can
then describe the curve in the continuum limit by a Loewner chain (gt )t∈[0,T ], whose driving
process would solve a stochastic differential equation

dξt = √
κ dBt + Ft dt. (27)

The drift Ft would depend on γ [0, t] and �|H\γ [0,t].
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We can use the event γT ∈ [x ′+, x ′−] to build the martingale

Pt = E�

x0;[x+,x−]
[
1γT ∈[x′+,x′−]

∣
∣ Fγ

t

]

so that

P0 = P�

x0;[x+,x−][hit [x ′
+, x ′

−]].
The Pt is the conditional probability, given γ [0, t], to hit [x ′+, x ′−]. By the Markov property
of the perturbed LERW, this is the probability to hit [x ′+, x ′−] for a LERW in H\γ [0, t] from
γt to [x+, x−], perturbed with �|H\γ [0,t]. Conformal invariance of the underlying Brownian
motion allows us to write this as

Pt = P�t

ξt ;[X+
t ,X−

t ][hit [gt (x
′
+), gt (x

′
−)]],

where �t (z) = |(g−1
t )′(z)|2�(g−1

t (z)) because of the appropriate time change (see Sect. 5.1.2)
and X±

t = gt (x±). From the formula (26) of the previous section we find, to first order in ε,

Pt = Zξt ;[gt (x
′+),gt (x

′−)]

Zξt ;[X+
t ,X−

t ] + ε

∫

H\γ [0,t]
d2z�̃(z)KH(ξt ;gt (z))

×
{

Zξt ;[gt (x
′+),gt (x

′−)]HH(gt (z); [X+
t ,X−

t ])
(Zξt ;[X+

t ,X−
t ])2

− HH(gt (z); [gt (x
′+), gt (x

′−)])
Zξt ;[X+

t ,X−
t ]

}

.

Since this should be a martingale, we require its Itô drift to vanish. To zeroth order in ε

we get just Ft = −2
ξt −X+

t

+ −2
ξt−X−

t

+O(ε), which says that our curve is an SLE2(−2,−2) i.e.

a dipolar SLE2. A naive computation neglecting the change of domain of integration and
exchanging integral and Itô differential shows the effect of the perturbation at first order in ε

Ft = −2

ξt − X+
t

+ −2

ξt − X−
t

+ 4ε

∫

H\γ [0,t]
d2z�̃(z)

HH(gt (z); [X+
t ,X−

t ])
X−

t − X+
t

× �m

(
(gt (z) − X−

t )(gt (z) − X+
t )

(gt (z) − ξt )2

)

. (28)

We have thus found out what is the first order correction to driving process by using the
subinterval hitting probabilities computed in Sect. 5.4.1. This argument works for LERW
aimed towards a nondegenerate interval [x+, x−], i.e. the dipolar setting. Chordal case could
be obtained from this as a limit, but it is very instructive to give another argument that can
be applied directly also in the chordal setting and that follows the general strategy outlined
in Sect. 4. We will do that next.

5.4.2 Perturbation to Driving Process from Girsanov’s Formula

We have argued in Sects. 4 and 5.3 that the continuum offcritical LERW measure should be
absolutely continuous with respect to SLE2, with Radon-Nikodym derivative10 (6)

10The intuition from weighted random walks says the Radon-Nikodym derivative should be Z−1
� ×

E[exp(−∫
H

d2z�(z)�(z))|Fγ
t ]. Using this formula one arrives at the same conclusion, but from a rigorous

point of view a coupling of the 2-d Brownian motion with “its loop erasure” SLE2 is missing anyway: it is
not known how to construct the two in the same probability space so that the SLE filtration Ft and Brownian
local time would both make sense.



LERW as an Example of Off-Critical SLEs 751

dP�

dP0

∣
∣
∣
∣
Ft

= Mt = e�EH(γ [0,t]) Z
H\γ[0,t];bdry cond.
� /Z

H\γ[0,t];bdry cond.

0

Z
H;bdry cond.
� /Z

H;bdry cond.

0

= const.×〈e− ∫
Ht

�(z) :χ−χ+: (z)d2z
(bdry cond.)〉Ht

〈(bdry cond.)〉Ht

,

where the constant is there just to make the initial value unity, M0 = 1. To first order in ε we
have

dPε�̃

dP0

∣
∣
∣
∣
Ft

= 1 − ε
∫

�̃(z)Nt (z)d2z

1 − ε
∫

�̃(z)N0(z)d2z
,

where Nt(z) is the one-point function martingale of Sect. 5.2.3. Explicitly in the chordal
case we have

1 − ε

∫

�̃(z)N
x0;x∞
t (z)d2z

= 1 − ε
2

π

∫

d2z�̃(z)

{

(ηt − ξt )
2�m

(
1

gt (z) − ξt

)

�m

(
1

gt (z) − ηt

)

− 1

2
log

(
ρt (z)

)
}

.

Since Bt appearing in the (critical) chordal driving process dξt = √
2 dBt + ρc

ξt −ηt
dt is a

P0
x0;x∞ -Brownian motion, an application of Girsanov’s formula tells us that under Pε�̃

x0;x∞ it
has additional drift

d

〈

B,−ε

∫

d2z�̃(z)N(z)

〉

t

(we will exchange integrations and quadratic variations etc. in good faith). This means that
the driving process ξt satisfies

dξt = √
2 dB ′

t + ρc

ξt − ηt

dt

+ 2ε

∫

d2z�̃(z)KH(ηt ;gt (z))�m

(
(gt (z) − ηt )

2

(gt (z) − ξt )2

)

with B ′
t a Pε�̃

x0;x∞ -Brownian motion.
In the dipolar setup, we have similarly

1 − ε

∫

�̃(z)N
x0;[x+,x−]
t (z)d2z

= 1 − ε
2

π

∫

d2z�̃(z)

{
(X−

t − ξt )(X
+
t − ξt )

X+
t − X−

t

�m

(
1

gt (z) − ξt

)

�m

(

log
gt (z) − X−

t

gt (z) − X+
t

)

− 1

2
log

(
ρt (z)

)
}

.

As above, in the dipolar driving process dξt = √
2 dBt + (

ρd

ξt −X−
t

+ ρd

ξt −X+
t

)dt we have a

P0
x0;[x+,x−]-Brownian motion Bt . Applying Girsanov’s formula again gives us to first order

in ε
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dξt = √
2 dB ′

t + ρd

ξt − X+
t

dt + ρd

ξt − X−
t

dt

+ 4ε

∫

d2z�̃(z)
HH(gt (z); [X+

t ,X−
t ])

X−
t − X+

t

�m

(
(gt (z) − X−

t )(gt (z) − X+
t )

(gt (z) − ξt )2

)

where B ′
t a Pε�̃-Brownian motion. In the limit X+

t ,X−
t → ηt we of course recover the

chordal result. The formula also coincides with the offcritical dipolar drift we got by the
subinterval hitting probability argument.

6 Conclusions

We have studied the example of off-critical loop-erased random walk in some detail, dis-
cussing the statistical physics, field theory and probability measure on curves. We have done
this in such a way that it should be easy to see which parts can be expected to generalize to
more physically relevant near-critical interfaces.

The most important observation is that one may try to use SLE-like methods to un-
derstand interfaces even if the model is not precisely at its critical (conformally invariant)
point. We have proposed a field theoretical formula for the Radon-Nikodym derivative of the
off-critical measure with respect to the critical one, which can then by Girsanov’s theorem
be translated to a stochastic differential equation for the Loewner driving process. For off-
critical LERW we’ve given two derivations of the equation for the driving process and they
coincide with the field theoretic prediction once the perturbing operator has been identified.
We remark that the off-critical driving process is not Markovian, it’s increments depend in
a very complicated manner on its past. But this must be so, because Loewner’s technique
reduces the future of the curve to the original setup by conformal maps and the off-critical
model is not conformally invariant.

We hope that this example encourages studies of interfaces in other off-critical models,
some maybe physically more relevant. Furthermore, even after the novel connections of
LERW to field theory, there clearly remains important questions to be understood before we
have a fully satisfactory field theory description of LERWs.
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Appendix: Random Walks as an Example

The example of random walks in 1D can serve as a trivial illustration of the themes discussed
in this article. Suppose we weight walks on Z starting from 0 by giving weight μeγ > 0 to
each positive step and μe−γ > 0 to each negative step. The weight of a walk of n steps
ending at s is simply μnesγ if −n ≤ s ≤ n and n − s is even, but 0 otherwise. The partition
function Z, obtained by summing over all paths, converges if and only if w ≡ 2μ coshγ < 1,
and then Z = 1

1−w
. We infer that the average length of a path is μ

∂ logZ

∂μ
= w

(1−w)2 which goes
to +∞ as w approaches 1−. Hence a critical theory is obtained for w = 1 i.e. when the
weight of walks of length n is 1 for each n and the model has a purely probabilistic random
walk description. Hence the critical line is 2μ coshγ = 1.
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The quadratic fluctuation of the end point of the walk is (λ ∂
∂λ

)2 logZ = w−w2+v2

(1−w)2 where
v ≡ 2μ sinhγ . For fixed v �= 0, this blows up like the average length of the walk for w → 1−,
but for v = 0 the divergence is milder. Hence the point γ = 0, which is nothing but the simple
symmetric random walk, is special among the critical points. At v = 0, the weight of a path
of length n is simply (w/2)n and a continuum limits exist for which log(w/2) scales like
the square of the lattice spacing, leading in the continuum to weight paths by the local time,
as used at length in these notes in the 2D situation.

But for now, let us concentrate on the critical line. The weight of an n steps path ending
at Sn is eγSn(2 coshγ )−n and the ratio of this weight to that of the simple symmetric random
walk is Qn = eγSn(coshγ )−n which is readily checked to be a martingale for the simple
symmetric random walk. As in the continuum, this martingale can be used to change the
measure to a new one under which the symmetric random walk is turned to an asymmetric
one. We get this trivially in the discrete setting, but in more complicated situations, the
flexibility offered by the continuum theory and Girsanov’s theorem is invaluable. So we
turn to the continuum limit.

Introduce a lattice spacing a so that the macroscopic position after n steps is aSn. If this
has a continuum limit and the martingale Qn as well, one must take γ ∼ ag and, in order for
the second factor (coshγ )−n to converge, one has to set a2n = t and keep t fixed when taking

the lattice spacing to 0, defining aSn → Xt in the limit. Then Qn goes to Mt = egXt − g2 t
2 . If

Xt is a 1D Brownian motion dXt = dBt , with quadratic variation (dBt)
2 = dt , then Mt is

well known to be a martingale, well-defined for t < ∞ finite, normalized to M0 = 1 and
such that M−1

t dMt = g dBt .
With respect to the dressed expectation Ê[· · · ] = E[· · ·Mt ], the process Xt satisfies dXt =

dB̂t + g dt with B̂t a Brownian motion with respect to Ê[· · · ].
In particular, it is easy to check that E[XtMt ] = gt . More generally, for any function

F(Xt) we have d
dt

Ê[F(Xt)] = Ê[A · F(Xt)] with dressed stochastic evolution operator A ·
F(Xt) = gF ′(Xt ) + 1

2F ′′(Xt ). This indeed corresponds to the stochastic equation dXt =
dB̂t +gdt . This follows from direct computation using the Itô derivative M−1

t d(F (Xt)Mt) =
(gF (Xt) + 1

2 F ′(Xt ))dBt + (gF ′(Xt ) + 1
2F ′′(Xt ))dt .

This naïve example can also serve as a warning. It is well known that the percolation in-
terface on a domain cut in the hexagonal lattice can be constructed as an exploration process.
If the beginning of the interface is constructed, its last step separates two hexagons of dif-
ferent colors, and its end touches a third hexagon. Either this third hexagon has already
been colored or one tosses a coin to decide the color, and then the path makes another step
along an edge separating two hexagons of different colors. The interface ends when it ex-
its the domain. Hence one can encode each interface by a coin tossing game (of random
duration). If the domain is the upper half plane, the length of the game is always infinite,
and there is a simple one to one correspondence between percolation interfaces and random
walks (simple in principle, there is some subtlety hidden in the fact that sometimes one can
make one or several interface steps without the need to toss a coin, so that the number of
steps of the interface is not simply related to the number of coin tossings). Critical perco-
lation corresponds to the simple symmetric random walk with w = 1, v = 0. As recalled
in the main text, the scaling region for critical percolation leads to a scaling v ∼ a3/4. On
the other hand, the scaling region for the random walk is v ∼ a � a3/4. This means that if
one uses a random walk with a (non critical) scaling limit, the corresponding percolation
interface is still critical, and symmetrically that if one looks at a percolation interface in the
(non critical) scaling limit, the corresponding random walk is not described by the scaling
region.
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